ACADEMIC PLANNER & UNITIZATION OF SYLLABUS

Department: Chemistry

Core T10 - Organic Chemistry IV

Subject Teacher: Dr.MridulaAcharyya

AY:2023-24

SYLLABUS UNITIZATION:

MONTH	WEEK	TOPICS to be TAUGHT
March	2	UV Spectroscopy: introduction;
March	3	Types of electronic transitions, end absorption; transition dipole moment and allowed/forbidden transitions; chromophores and auxochromes;
March	4	Bathochromic and Hypsochromic shifts; intensity of absorptions (Hyper-/Hypochromic
April	1	Amines: Aliphatic & Aromatic: preparation, separation
April	2	Application of Woodward's Rules for calculation of λ max for the following systems: conjugated diene, α , β -unsaturated aldehydes and ketones (alicyclic, homoannular and heteroannular)
April	3	Extended conjugated systems (dienes, aldehydes and ketones); relative positions of λ max considering conjugative effect, steric effect, solvent effect, effect of pH
April	4	Effective chromophore concentration: keto-enol systems; benzenoid transitions
May	1	Nitro compounds (aliphatic and aromatic): preparation and reaction
May	2	IR Spectroscopy: introduction; modes of molecular vibrations (fundamental and nonfundamental); IR active molecules; application of Hooke's law, force constant; fingerprint region and its significance; effect of deuteration; overtone bands; vibrational coupling in IR;
May	3	Factors affecting stretching frequencies: effect of conjugation, electronic effects, mass effect, bond multiplicity, ring size, solvent effect, H-bonding on IR absorptions; application in functional group analysis.

May	4	Characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C (including skeletal vibrations of aromatic compounds), C=O, C=N, N=O, C=C, C=N;
June	1	NMR Spectroscopy: introduction; nuclear spin; NMR active molecules; basic principles of Proton Magnetic Resonance; equivalent and non-equivalent protons; chemical shift and factors influencing it; ring current effect; significance of the terms: up-/downfield, shielded and
June	2	Deshielded protons; spin coupling and coupling constant (1st order spectra); relative intensities of first-order multiplets: Pascal's triangle; chemical and magnetic equivalence in NMR
June	3	Elementary idea about non-first-order splitting; anisotropic effects in alkene, alkyne, aldehydes and aromatics; NMR peak area, integration; relative peak positions with coupling patterns of common organic compounds (both aliphatic and benzenoid-aromatic); rapid proton exchange; interpretation of NMR spectra of simple compounds
June	4	Applications of IR, UV and NMR spectroscopy

REFERENCES

- 1. Kemp, W. Organic Spectroscopy, Palgrave.
- Pavia, D. L. et al. Introduction to Spectroscopy, 5th Ed. Cengage Learning India Ed.
 (2015)

(2015).

- 3. Dyer, J. Application of Absorption Spectroscopy of Organic Compounds, PHI Private
- 4. Limited
- 5. Warren, S., Designing Organic Synthesis, Wiley India, 2009.
- 6. Carruthers, W. Modern methods of Organic Synthesis, Cambridge University Press.
- 7. Willis, C. A., Wills, M., Organic Synthesis, Oxford Chemistry Primer, Oxford University